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Abstract-Transient heat conduction with uniform rate of intemai heat generation has been numericafly 
investigated in infinitely long eccentrically hollow cylinders. Two comb&&ions of boundary conditions of 
the first and second kinds &~e~beau considered. The first of these combinations corresponds to the case of 
one surface being heated isothermally while the opposite surface is maintained at ambient temperature. 
The second combination of boundary conditions is with one surface maintained isothermal while the 
opposite surface is adiabatic. Results are presented for a radius ratio 0.5 nith dimensionless eccentricities 

ranging from 0. fi to 0.8 and various values of internal heat generation. 

lNTRODUCllON 

Heat generated in underground electric cable systems 
due to conductor losses and magnetic effects can be 
transferred to the earth. However, the rate of heat 
dissipation from a cable and hence its insulation tem- 
perature limit the electrical transmission capacity of 
underground cable system (Abdulhadi and Chato [l]). 
To increase the current carrying capacity, cooling 
techniques by an annular gap of gas or oil may be 
proposed. Thermal expansion of the cable inside the 
fluid gap changes the radial position of the inner cable 
relative to its outer housing wall and therefore eccen- 
tric annular configurations can exist. The horizontal 
annular configuration can also be found in the field 
of solar energy utilization. In the so-called parabolic- 
cylindrical solar collector, a circular receiver tube, 
with a suitable selective coating, is enclosed by a con- 
centric glass envelope and situated along the focal line 
of a parabolic trough reflector. Eccentricity between 
the receiver tube and its glass envelope would indeed 
affect the resistance to heat transfer in this system. 
On the other hand, heat transfer in vertical annular 
channels can occur in many engineering applications 
(El-Shaarawi and Sarhan [2] and El-Shaarawi and Al- 
Nimr (31). In practical situations the manufacturing 
tolerances and operating conditions can introduce 
eccentriuities in nominally concentric annuli. 

Prior to the onset of free convection in an annular 
channel the conduction mode is the prevailing heat 
transfer mode, particulariy when the temperature is 
low and radiation is negligible. Heat coaduction and 
heat storage capacity in eccentric configurations may 
also be important in cases of eccentrically drilled tubes 
or hollow shafts or eccentric insulations. 

Since an annulus has two boundary surfaces on 
which thermal conditions may be independently 
imposed, there is a large number of conduction heat 

transfer problems of significant interest. However, 
with some usual assumptions [4] the energy equation 
becomes linear and homogeneous and consequently 
the superposition technique can be utilized provided 
that the boundary conditions are also linear. With 
the application of such a mathematical technique, a 
solution (temperature field) satisfying arbitrary 
boundary conditions could be determined by simply 
adding multiples of solutions (temperature fields) 
satisfying certain simple boundary conditions. For 
example, on each of the two boundary surfaces, one 
of the following three linear boundary conditions is 
usually employed. The temperature may be constant, 
or the temperature gradient (normal to the boundary) 
may be constant (i.e. constant heat flux when the 
thermal conductivity k is constant), or there may be 
heat exchange by convection with an environment at a 
constant ambient temperature according to Newton’s 
law of cooling (i.e. heat transfer is linearly pro- 
portional to the difference between the temperature of 
the boundary and that of the environment). These 
simple-linear boundary conditions are usually referred 
to as the boundary condition of the first kind, the 
second kind and the third kind, respeotively [4]. Thus, 
for an annulus, there are nine heat conduction prob- 
lems corresponding to the possible nine combinations 
of the aforesaid thermal conditions on the two surface 
boundaries. ‘Ozisik [4] presented exact solutions for 
these nine heat conduction problems in concentric 
hollow cylinders when the boundary conditions of 
the first, second, and third kind are homogeneous. 
However, since the two cylindrical boundaries of an 
annulus have unequal areas these nine combinations 
of the three simple-linear boundary conditions can 
indeed give 18 diRerent physical situations when the 
asymmetric thermal conditions are interchanged on 
the inner and outer boundaries in each case. 
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constant of integration in equations 5 inner radius of the annular solid 
(12) and (14), given in Table 1 rO outer radius of the annular solid 
constant in bipolar transformation T temperature 
equations (location of the positive TO ambient or initial temperature 
pole of the bipolar coordinate system), TW isothermal temperature of heat- 
equal r,sinh vi or r,sinh qO transfer boundary 
constant of integration in equations t dimensionless time, m/D2 
(12) and (14), given in Table 1 x first Cartesian coordinate 
constant of integration in equations Y second Cartesian coordinate 
(12) and (14), given in Table 1 Z axial coordinate (third Cartesian 
specific heat of the solid material coordinate). 
constant equal to H2(cosh q - cos Q2 
Q = Wnht1,)/(2{1 -WN2 Q 
equivalent diameter of annulus, Greek symbols 
2 (r, - ri) cl thermal diffusivity of solid, k/p 
constant of integration in equations 8 dimensionless temperature, 
(12) and (14), given in Table 1 (T- T,)/(Tw- To) 
dimensionless eccentricity or 6, complementary solution of the steady- 
dimensionless center-to-center distance, state energy equation 
e/(r,--r,) % particular solution of the steady-state 
eccentricity (distance between the two energy equation 
centers of the circular boundaries of the 0, general solution of the steady-state 
solid), a(cothr],-cothqi) energy equation 
dimensionless transformation factor, ? first bipolar coordinate 
h/D = sinh 17,/[2( 1 - N)(cosh v - cos <)] 5 second bipolar coordinate 
coordinate transformation scale V third bipolar coordinate 
factor, a/(cosh q -cos 5) P density of solid 
thermal conductivity of the solid r time. 
number of steps of the numerical mesh 
network in the c-direction 
annulus radius ratio, Subscripts 
ri/ro = sinh @inh vi C complementary part of steady-state 
number of steps of the numerical mesh solution 
network in the qdirection or infinite- i on the inner surface 
series summation parameter in steady- 0 on the outer surface or initial 
state solution (ambient) value 
dimensionless rate of internal heat P particular integral part of steady-state 
generation q D’/k(T, - To) solution 
rate of internal heat generation per S steady-state conditions 
unit volume of solid W on the heat-transfer boundary. 

The above discussion concerning superposition of wall is kept isothermal at the inlet fluid temperature. 
solutions corresponding to simple boundary con- 
ditions is also applicable to fully developed forced or 
natural convection in annular passages. However, the 
boundary condition of the third kind is meaningless 
in such convection problems. Therefore, Reynolds et 
al. [5] completely solved the problem of heat transfer 
to fully developed laminar flow in concentric annuli by 
defining only four fundamental boundary conditions. 
These fundamental boundary conditions are com- 
binations of the aforesaid boundary conditions of the 
first and second kind when applied on each of the two 
boundaries of an annulus. The fundamental boundary 
conditions of the first type correspond to a prescribed 
isothermal temperature at one wall while the opposite 

The second fundamental boundary conditions are 
when one wall is maintained at uniform heat flux 
(constant temperature gradient) and the opposite wall 
is adiabatic. The fundamental boundary conditions of 
the third kind are obtained by keeping one of the walls 
isothermal and the opposite wall adiabatic, The fourth 
fundamental boundary conditions correspond to one 
wall maintained at uniform heat flux while the 
opposite wall is kept isothermal at the inlet fluid tem- 
perature. Exact fundamental solutions corresponding 
to these four fundamental boundary conditions have 
been obtained iaeonoentric annnli for f&y developed 
forced convection by Lundberg et al. [6] and for fully 
developed natural convection by El-Shaarawi and Al- 
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Nimr [3]. Trombetta [7] obtained approximate solu- 
tions for fully developed forced convection in eccentric 
annuli under the fundamental boundary conditions of 
the first, second and fourth types. 

Exact solutions for conduction heat transfer in cyl- 
inders with an eccentric bore (eccentric annuli) and 
uniform rate of internal heat generation are available 
in the literature only for the steady-state case. El- 
Saden [8] obtained an exact solution for the steady 
conduction in an infinitely long, eccentrically hollow 
cylinder with uniform rate of internal heat generation 
when the boundary surfaces are maintained at con- 
stant but different temperatures. Rather than using 
bipolar coordinates, Eckert and Drake [9] analyzed 
and obtained an approximate solution for the same 
problem by the superposition of infinite line heat 
source and sink solutions. DeFelice and Bau [lo] pre- 
sented an exact solution for the steady case with no 
internal heat generation when boundary conditions of 
the third kind (convective boundary conditions) are 
imposed on both surfaces. 

The problem of heat conduction in a homogeneous 
semi-infinite soil surrounding a cylindrical heat source 
buried at a specified depth below an isothermal hori- 
zontal surface is a special case of the above mentioned 
conduction problem in eccentric annuli. Approximate 
solutions, by the superposition of infinite line heat 
source and sink solutions, for this special problem 
with an isothermal heat source were obtained under 
the transient and steady-state conditions by Ioffe [I I] 
and Eckert and Drake [9], respectively. Exact steady 
solutions by the use of bipolar @cylindrical) coor- 
dinates were obtained by Thiyagarajan and Yov- 
anovich [ 121 for the constant heat flux boundary con- 
dition and by Bau and Sadhal [13] for the case of a 
constant convective heat transfer coefficient and the 
case of a linear temperature variation along the heat 
source surface. Using bipolar coordinates, Martin and 
Sadhal [14] determined the upper and lower bounds 
on the transient temperature distribution and approxi- 
mate solutions for engineering estimates for the case 
with a convection boundary condition on the cyl- 
indrical heat source. 

A careful search of the literature failed to disclose 
any prior work on the problem of transient con- 
duction heat transfer in eccentrically hollow cylinders 
with or without internal heat generation. This motiv- 
ated the present work which addresses the transient 
case numerically and the steady-state case analytically 
(using the closed-form steady solution of El-Saden 
[S]). Moreover, the importance of the conduction 
problem as the limiting case of convection heat trans- 
fer in eccentric annular passages guided the selection 
of the investigated thermal boundary conditions. In 
this paper two combinations of boundary conditions 
of the first and second kinds have been imposed on the 
two surfaces of the annulus. These two combinations 
correspond to the fundamental boundary conditions 
of the first and third types, according to the definitions 

of fundamental boundary conditions by Reynolds et 
al. [5]. 

The geometry of the problem under consideration 
is an infinitely long, eccentrically hollow cylinder for 
which a two-dimensional cross-section is shown in 
Fig. l(a). The eccentric annular solid material is 
assumed to have constant physical properties and uni- 
form internal heat generation per unit volume. For 
any prescribed thermal conditions on the two circular 
boundaries of this geometry and an initial condition, 
the unsteady heat conduction in the solid eccentric 
annulus is governed, in the Cartesian (x-y) plane, 
by the following two dimensional transient energy 
equation 

iY=T c?‘T q 1 i?T 
axz+7+;=--C(. 

(?v- (1) 

The geometry under consideration can easily be 
described by the more convenient bipolar coordinate 
system (q, c and y) shown in Fig. 1 (b). In this system, 
constant rl and 5 are two sets of orthogonal circles in 
the physical (x-y) plane. The third coordinate (y-axis) 
is perpendicular to the plane of the paper. The two 
surfaces of the solid annulus under consideration are 
represented by constant values of q. The trans- 
formation from rectangular to bipolar coordinates is 
given by the following equations [ 151 

a sinh r~ 
X= 

cash q - cos l (2) 

asin 
’ = coshn-cost (3) 

and 

2 = y. (4) 

In the above equations, “a” is a constant (a = ri. 
sinh r,ri = r, sinh q,). The first set of circles, 
- cc < tl< cc, have radii equal (acsch q) and their 
centers are on the x-axis at (acothn, 0). Thus the 
eccentricity, e, is equal to a(cothq,-cothqi). The 
second set of circles, 0 ,< r < 2n, have radii equal 
(a csc r), their centers are on the y-axis at (0, acot Q 
and all pass by the poles of the system at (a,O) and 
(- a,O). The transformed geometry in the complex tp 
t plane is, as shown in Fig. l(c), a slab of length 
(vi-q,,) and width equal to the limits of [, that is 2a. 

Using the transformation equations (2)-(4), it may 
be shown that the governing equation (1) is trans- 
formed in the ~f-[ coordinate system into the following 
equation 

(9 
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Fig. 1. (a) Two-dimensional cross-section of the geometry under consideration; (b) bipolar coordinate 
system ; (c) transformed geometry in 1-5 plane and the numerical mesh network. 

In the above equation h is the coordinate trans- 
formation scale factor [h = a/(cosh q - cos C)]. The 
equation and the boundary conditions are linear in 
the dependent variable (T) and hence fundamental 
solutions can be utilized to obtain more genera1 solu- 
tions. It is to be noted that in each of the previously 
specified four fundamental boundary conditions there 
is one boundary maintained either adiabatic 
(ar/aq = 0) or at ambient temperature To. The 
boundary opposite to that maintained adiabatic or at 
To is called the heat transfer.boundary (El-Shaarawi 
and Al-Nimr [3]). Thus, as the heat transfer boundary 
might be the inner or the outer surface, there are eight 
fundamental solutions that can be considered. For 
each of the previously mentioned four fundamental 
boundary conditions there are two possible cases that 
can be considered, narhely, case I, in which the heat 
transfer boundary is at the inner surface and case 0, 

in which the heat transfer boundary is at the outer 
surface. Thus each of the eight cases that can be con- 
sidered under the previously defined four fundamental 
bouhdary codditions may be designated by a number 
(1, 2, 3 or 4) and a letter (either I or 0). The number 
would refer to the fundamental boundary conditions 
under consideration (e.g. 1 refers to fundamental 
boundary conditions of first type) and the letter refers 
to the heat transfer boundary. Thus, case (1 .I) refers 
to a case under fundamental boundary conditions of 
the first type with the inner surface being the heat 
transfer boundary. Similarly, case (3.0) refers to a 
case under fundamental boundary conditions of the 
third kind with the outer surface being the heat trans- 
fer boundary, and so on. In the present work, only 
the following cases have been considered : (1 .I), (1 .O), 
(3.1) and (3.0). 

Using the dimensionless parameters given in the 
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nomenclature the governing equation (5) can be writ- 
ten, for all the cases under consideration, in the fol- 
lowing non-dimensional form 

a2e a28 
2 afJ %+-++H2Q=H at. (6) 

Due to symmetry, the following two boundary con- 
ditions with respect to r are applicable 

for~=Oorx:a~/a~=O. (7) 

On the other hand, in all the cases considered the solid 
is initially (t < 0) at ambient temperature, i.e. 

fort < 0:8 = 0. (8) 

Then (when t > 0) the heat is internally generated in 
the solid and simultaneously one of its surfaces is 
isothermally heated to T, while the other surface is 
kept either at the initial ambient temperature T, or 
adiabatic. Thus the two boundary conditions with 
respect to q for the four cases considered are as follows 

Case 1.1 1.0 3.1 3.0 

B.C.onq = q, B = 1 0 = 0 8 = 1 g = 0 

B.C.onq=q, 8=0 B= 1 z=O f?= 1. (9) 

ANALYTICAL STEADY-STATE SOLUTIONS 

Under steady-state conditions equation (6) reduces 
to 

$+$= -H2Q= -c* 
(cash q - cos 0’ ’ 

(10) 

Such steady-state conditions are achieved at con- 
siderably large values of time, i.e. the solution to the 
transient problem should asymptotically approach its 
corresponding steady-state value. Thus, steady-state 
analytical solutions can provide a check on the 
adequacy of the present transient numerical results. 

The general solution of the steady-state equation 
(10) is given by El-Saden [S], as 

Q,(v,~) = e,+e, (11) 

where the complementary part of the solution, after 
applying the boundary conditions (7), is 

e, = Atf+B+ f (Ce”q+D*e-“q)cosne (12) 
n=l 

and the particular integral part of the solution, which 
is due to the internal heat generation, is 

eP=-c* cash q 
2 coshq-cost 

= - ycothq-C* f cothqe-“‘Qzosn<. (13) 
“=I 

The series part on the right-hand side of equation 

(12) or (13) is due to the eccentricity and the general 
solution (11) can now be written in the following form 

8, = &+B- $COthtlf f COS$ 
?I= 1 

x[Ce”V+(D*-C*cothrl)e-“V]. (14) 

It is worth mentioning that the right-hand side of 
equation (13) was given by El-Saden [8] ; it can be 
obtained by finding a Fourier-cosine expansion of the 
even function [l/(coshr-cos 5)] as shown in [16]. 

Applying the boundary conditions the constants A, 
B, C and D* in equation (14) are obtained for the 
considered cases as given in Table 1. It is worth noting 
that the values of these constants for cases (1 .I) and 
(1 .O) are given in Table 1 for the sake ofcompleteness. 
These were obtained before by El-Saden, but in terms 
of two different but constant dimensional values of 
temperatures on the boundary surfaces. 

NUMERICAL METHOD OF SOLUTION 

Equation (6) is very difficult to solve exactly since H 
is a function of q and 5 ; hence we resort to numerical 
solution. Due to symmetry equation (6) needs to be 
solved for 0 < c < n, i.e. in only half the slab shown 
in Fig. I(c). Figure l(c) shows the numerical grid in 
the q-c plane where the independent variable 0 is 
computed, for a given time t, at the intersections of 
the grid lines and (& j) is a typical mesh point. Mesh 
points are numbered consecutively ; i is progressing in 
the q-direction with i = 1,2,3,. . . ,n + 1 from the outer 
surface and j is progressing in the r-direction with 
j= 1,2,3 , . . ,m + 1 from the wide side of the annulus 
(at 5 = 0). 

Using the traditional alternating-direction implicit 
(ADI) finite-difference scheme we faced difficulties in 
obtaining convergent numerical solutions. On the 
other hand, the following finite-difference scheme has 
proved to be successful for all values of dimensionless 
eccentricity (E). 

~i-I.,-2~,,+~i+,., e:-, -2e,l;+e,l;+, 

(Arl)’ + (Al)’ 

e -e* 
+Hf,Q = Hf,y, (15) 

where the asterisk (*) superscript denotes the pre- 
vious time step and hence the superscripted 0s are 
known. 

The two boundary conditions given by equation (7) 
can be written, using backward and forward finite 
differences, respectively, as 

e,., = e,,, (16) 

and 

ei.m +-, = 6,, . (17) 

Similarly, the boundary conditions (9) on the inner 
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and outer surfaces in cases 3.1 and 3.0, respectively, 
can be rewritten as 

6, = b,, (18) 
and 

e n-t 1.j = 80. (19) 

The problem under consideration is governed by 
three controlling parameters, namely, the annulus 
radius ratio (N), the dimensionless eccentricity (E) 
and the dimensionless internal heat generation (Q). A 
numerical solution can be obtained by first selecting 
values of these controlling parameters. In the present 
work computations were carried out in an annulus of 
radius ratio 0.5 for various selected values of E and 
Q. The radius ratio 0.5 was chosen since it represents 
a typical annular geometry with its value of N far 
enough from unity (N = 1) which represents the case 
of a slab bounded by two parallel-plate surfaces. 
Knowing the radius ratio (N) and the eccentricity (E), 
the values of rl for the inner and outer surfaces are 
computed by the following two equations respectively 

r, = 1% 
N(1fB2)f(l-E’) 

2NE 

?0 = log, 
N(l-E2)+(l+E2) 

2E 

+ 
N(l-E’)+(l+E’) ‘-1 

2E > l- 
Having computed vi and q,, the value of By is obtained 
by dividing (vi - qO) over n (the number of steps in the 
q-direction). 

For given At and At the numerical procedure con- 
tinues as follows. For each value ofj (starting from 
j = 2) equation (15) is applied with i = 2,3,. . . , and 
n to give (n- 1) equations in (n- 1) unknown values 
of 0. The matrix of coefficients of the resulting system 
of linear equations is a tridiagonal matrix and hence 
Thomas’ method is used to obtain a numerical solution 
for the interior grid points (for each value ofj). This 
procedure is repeated for all values ofj from_j = 2 until 
j = m to scan the whole mesh network. Equations (16) 
and (17) are used to obtain the values of 0 on the two 
C-boundaries. Moreover, equation (18) or equation 
(19) is used to obtain the values of 0 on the adiabatic 
boundary in cases 3.1 and 3.0, respectively. The 
obtained values of 0 at the present time step will then 
be considered as old values (superscripted es) for the 
next time step and thus the whole process can be 
repeated until steady-state conditions are reached. 
Steady-state conditions mean that the obtained values 
of 8 do not change with further increase in time. 

The steady-state analytical solutions provided a 
check on the adequacy of the present computer code 
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and consequently on the obtained transient numerical 
results. The obtained numerical transient solutions 
were found to asymptotically approach (at consider- 
ably large values of the time r) the available steady- 
state solutions given by equation (14) and Table 1. 
None of the computer runs was allowed to stop 
before the obtained transient numerical results con- 
verge to the corresponding steady-state analytical 
solution with a maximum tolerance less than 1% (in 
the value of the local dimensionless temperature 6 
at any mesh point). On the other hand, a thorough 
numerical experimentation has been conducted to 
investigate the effect of mesh sizes on the obtained 
numerical results and the computer CPU time. For 
example, the obtained steady-state times for case 1.0 
with N = 0.5, Q = 5, E = 0.5 and &t = 10V3 cor- 
responding to mesh sizes m x n = 20 x 20, 25 x 25, 
30 x 30,20 x 40,35 x 35 and 35 x 40 are, respectively, 
0.512, 0.511, 0.511, 0.507, 0.509 and 0.509. The cor- 
responding computer CPU times (using WF 77 Sys 
D) are, respectively, 63.35, 98.90, 142.52, 128.07, and 
more than 180 in the last two cases. Similarly, the 
obtained steady-state times for the same values of N, 
Q, E and At in case 1 .I for mesh sizes m x n = 20 x 15, 
20x20, 20x25, 20x30, 20x35, 25x25, 40x20, 
30 x 30 and 40 x 35 are, respectively, 0.514, 0.507, 
0.504, 0.501, 0.500, 0.505, 0.500, 0.503 and 0.501. It 
might be worth mentioning that time steps as low as 
IO-’ were used in some cases (at the expense of the 
computer execution time). However, for the sake of 
unification in comparisons all the results presented in 
the present paper have been obtained using 
mxn=20x20andAt= 10e3. 

RESULTS ANU MSCUSWN 

For case 1 .I and a given E (E = 0.8) in an annulus 
of N = 0.5, Fig. 2(a) shows the variation with time 
of the dimensionless temperature on an intermediate 
surface having q = ‘I* = (vi + ~,)/2 for two values of 
Q, namely, Q = 0 and 5. For either value of Q and a 
given l, the temperature of this surface increases with 
time until it reaches the steady-state value (at 
t, = 0.749 and 0.658 for Q = 0 and 5, respectively). 
The figure shows that, for any value of Q, the narrow 
side of the annulus (5 -+ Z) reaches the steady-state 
conditions much faster than the wide side (l--t 0). 
This is attributed to the larger heat storage capacity 
of the wide side compared to that of the narrow side. 
On the other hand, for .given time and 5 the tem- 
perature value with internal heat generation is as 
expected, larger than its corresponding value without 
internal heat generation (Q = 0). 

The effect of eccentricity on the transient response 
of the temperature of the system is clarified in Fig. 
2(b). For case 1 .I and a given Q (Q = 5) in an annulus 
of N = 0.5, this fisre gives the variation with time 
of the dimensionless temperature on the intermediate 
surface of q = q* = (vi +-qJ/Z for two values of E, 
namely, E = 0.1 and E = 0.8. As can be seen from 

1.00 

e 6MI Stmxty Slate Time I 

0.60 

749 ISteady Stale Tie 1 

e h O.BStl ISwdy Slolr liie I 
I 

aeo o.3 Ks 

0.20 I I 
0.0 n/4 n/2 5 3n/k n 

Ibl 

Fig. 2. (a) Effect of Q on transient temperature distribution 
at q = q* in case 1.1, N = 0.5, E = 0.8, ---- Q = 0, 
---Q = 5; (b) effect of eccentricity on transient tem- 
perature distribution at q = q* in case 1.1, N = 0.5, Q = 5, - 

---E = 0.1, -E = 0.8. 

this figure, the eccentricity has a prominent effect on 
the transient temperature distribution. For a given 
time (t), as the value of E increases the temperature 
distribution on the surface of a given 11 becomes more 
dependent on 5. In a concentric ammlus (E = 0) in 
both cases 1.1 and 1.0, the isothermal lines, without 
or with internal heat generation, are concentric circles, 
i.e. the temperatire is independent of the angular 
coordinate. However, as the annulus deviates from 
the concentric situation the temperature in the wide 
side (4 --) 0) becomes higher than that in the narrow 
side (t-+x). This is due to the larger internal heat 
generated in the wide side of the annulus since this 
side has more solid material per unit length than the 
narrow side. 

Figure 3(a) shows the transient temperature dis- 
tribution on the insulated boundary of an annulus 
of radius ratio 0.5 and dimension&s eccentricity 0.7 
under thermal boundary condieions 3J and 3.0 with- 
out internal heat generation. Due to the presence of an 
insulated boundary, steady-state can only be achieved 
under these conditions when the solid temperature 
becomes uniform and equals the temperature of the 
heated boundary (i.e. dimensionless temperature 
8, = 1 everywhere). As can be seen from Fig. 3(a), as 
the time elapses the temperature of the insulated sur- 
face (and similarly that of the internal solid material) 



2008 M. A. I. EL-SHAARAWI and E. MORHEIMER 

0.75 O.fl,’ ,/ ,/- 
/ / 

0.2,’ 
0.50 

0.25 

P ,/ ,/ ,. 0.2 

/ 1o.r 

/’ OS/ 
/ 

,’ 
A’ 

0.00 I 1 

0.00 n/4 n 
g 

3X/L A 

IO) 

Steady State 

Fig. 3. (a) Effect of boundary conditions on temperature 
distribution on insulated wall, N = 0.5, E = 0.7, Q = 0, -- 
-- case 3.1, - case 3.0; (b) transient temperature dis- 
tribution on the inner insulated wall temperature in case 3.0, 

N = 0.5, Q = 0, ----E = 0.1, -E = 0.7. 

increases and approaches asymptotically the aforesaid 
unity value. However, the narrow-side of the annulus 
reaches such steady-state conditions faster than the 
wide-side. Therefore, the process of increasing the 
temperature towards equalization at steady-state con- 
ditions occurs not only by diffusion of heat in the 
radially-like (9) direction (from the heat transfer 
boundary to the insulated surface) but also in the 
circumferential C-direction (from the narrow-side to 
the wide-side of the annulus). This latter mechanism 
of conduction heat transfer has a longer path than the 
former (which is the only mechanism in a concentric 
case) and hence it can be anticipated that eccentricity, 
as will be shown later, would increase the time needed 
to reach steady-state conditions. For given time and 
5, Fig. 3(a) shows that the temperature under thermal 
boundary conditions 3.0 is higher than that under 
thermal boundary conditions 3.1. Moreover, the sys- 
tem reaches steady-state conditions in case 3.0 faster 
than in case 3.1. These are attributed to the larger heat 
transfer surface area in case 3.0 than in case 3.1. 
Moreover, reaching steady-state more quickly for case 
3.0 is also probably due to the surface over which the 
temperature is kept constant at the steady-state value 
8 = 1 (i.e. there is much more material at 0 = l), 

1.00 ‘L eL__--_---_--_ 

0.50 I.___.I 
0.0 n/4 n/l 5 h/4 II 

101. 

3.00 

8 

2.50 

2.00 

1.50 

1.00 
0.0 n/4 n/2 3n/4 n 

Fia. 4 

Fig. 4. (a) Transient temperature distribution on the inner 
insutated wall in case 3.0, N = 0.5, Q = 5, ---- E = 0.1, 
-E = 0.7; (b) steady-state temperature distribution on 
the outer insulated wall in case 3.1 for various eccentricities, 

To clarify the effect of eccentricity, Figs. 3(b) and N = 0.5, Q = 5. 

4(a) give the time-variation of the insulated (inner) 
wall temperature for. two values of eccentricity, 
namely,E=0.1andE=0.7,inanannulusofN=0.5 
under thermal conditions 3.0 without and with 
internal heat generation, respectively. Both figures 
show that increasing the value of E makes the tem- 
perature more dependent on the C-coordinate. With- 
out internal heat generation (Q = 0), the t;-direction 
diffusion of heat is always from the narrow side (5 -+ 
n) to the wide side (5 --, 0), as shown in Fig. 3(b). 
However, with internal heat generation (Q + 0) Fig. 
4(a) shows that at large values of time the l-direction 
diffusion of heat reverses its direction and becomes 
from the large side to the narrow side of the annulus. 
This is attributed to there being more material per 
unit length on this side and hence the increase in the 
temperature of the solid in the wide side as a result of 
internal heat generation. Figure 4(b) focuses on the 
pronounced effect of eccentricity on the insulated wall 
temperature. This figure gives the steady-state tem- 
perature distribution on the outer wall of an annulus 
of N = 0.5 under thermal conditions 3.1 for a value of 
Q = 5. The figure clearly shows that increasing the 
value of E causes an increase in the wall temperature 
on the wide side and a decrease in this temperature on 
the narrow side. 
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Fig. 5. (a) Variation of maximum temperature on the outer 
insulated wall in case 3.1, 5 = 0, N = 0.5, ---- E= 0.1, 
-E = 0.7 ; (b) variation of maximum temperature on the 
inner insulated wall in case 3.0, 4 = 0, N = 0.5, ---- 

E = 0.1, -E = 0.7. 

Engineers are not frequently concerned with the 
details of the temperature field but only with 
maximum temperature and the time required to reach 
steady-state conditions. From the previous presented 
results it is clear that for given time, E and Q, the 
maximum solid temperature in both cases 3.1 and 3.0 
would occur on the insulated wall at 4 = 0. Figures 
5(a) and (b) give for cases 3.1 and 3.0, respectively, 
the variation of such maximum temperature with time 
at two different eccentricity values in an annulus of 
N = 0.5 for various values of Q. On the other hand, 
Figs. 6(a) and (b) give the time required to reach 
steady-state conditions under the four thermal bound- 
ary conditions investigated. It is worth mentioning 
that the computer runs for any of the curves shown in 
these two figures (i.e. a given k’) were made using the 
same q and 5 mesh sizes so that the order of numerical 
error magnitude would be the same for all values of 
Q. As can be seen from these two figures, for a given 
E, increasing the value of Q generally decreases 
slightly the time needed to reach the steady-state con- 
ditions. On the other hand, for a given Q, increasing 
the value of E increases prominently the time required 
to achieve steady-state. The time required to achieve 

steady-state conditions is of great value to thermal 
and control engineers. 

CONCLUSOMS 

Transient conduction heat transfer with uniform 
rate of internal heat generation has been numerically 
investigated in infinitely long eccentric hollow cyl- 
inders under the fundamental boundary conditions of 
the first and third types. In all cases considered, either 
with or without internal heat generation, the obtained 
results show that eccentricity has a pronounced effect 
on the transient thermal response of the system. 
Eccentricity creates a diffusion of heat in the second 
(c or circumferential) direction from the narrow side 
of the solid annulus to its wide side ; this diffusion 
decreases with time. On the other hand, the internal 
heat generation creates also a t-diffusion of heat but 
in the opposite direction (from the wide side of the 
annulus to its narrow side) ; this diffusion increases 
with time. Finally, variation of the time required to 
reach steady-state conditions with eccentricity and 
internal heat generation has been given for all cases 
considered. 
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